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ABSTRACT 

Reservoir characterization and prediction modeling have long been among the more challenging tasks in geothermal reservoir engineering. 

The main reason is the presence of fractures and faults, which control the mass and heat transport in the subsurface. In this work, the 

applicability of using statistical methods for reservoir characterization as well as prediction modeling was explored. Three methods were 

analyzed and applied on a synthetic library of fracture networks. First, the Alternate Conditional Expectation (ACE) algorithm was used 

to estimate well-to-well connectivity between injection and production wells using tracer return and temperature data. The results obtained 

with tracer data were in good agreement with tracer transit times, for 80.5% of the fracture networks the ACE connectivity was within 

±0.05 of the connectivity implied by transit time, while temperature data showed much less correlation to connectivity with the ratio 

reduced to 58.3%. Second, k-means clustering was applied where fractures of similar character were grouped together and interwell 

connectivity and thermal behavior estimated. The method displayed potential but the main limitations were deciding on the number of 

clusters and the growing complexity with added producers. Third, preliminary results using direct forecasting with Canonical Functional 

Component Analysis (CFCA) were presented. A significant reduction in the predicted range of thermal responses for production wells 

was obtained but introducing more complex data is likely to cause data-prediction relationships to become less linear. 

1. INTRODUCTION  

An essential part of a sustainable exploitation from geothermal reservoirs is the ability to understand and predict the reservoirs’ response, 

such as premature cooling and pressure drawdown. This commonly involves characterizing the reservoirs and building geological models. 

Characterizing of fractures and flow paths is a challenging task, fractures control the mass and heat transport in the subsurface and the 

details of their location and orientation are often uncertain. Nowadays, with a substantial increase in data due to advances in computer 

power and measuring equipment, the oil and gas as well as the geothermal industries are presented with some of today’s most complex 

data science problems. Therefore, statistical methods are becoming increasingly popular as tools for predictive analysis in the exploration, 

production and delivery phases.  

Characterization of fractured reservoirs has been the subject of numerous papers. Production and injection rates, which are among the 

most readily available data, have been used to infer well-to-well connectivity to optimize injection schedules. Heffer et al. (1997) 

calculated the Spearman’s rank correlation coefficient between oil production rates, reflecting communication through the reservoir. 

Refunjol and Lake (1999) applied the Spearman’s analysis in combination with geological features and tracer data to determine 

preferential flow paths in oil reservoirs. Tian and Horne (2016) proposed a new method, the modified Pearson’s correlation coefficient, 

to calculate correlation between injection and production wells and compared to the Spearman’s analysis, highlighting the method’s 

advantages in identifying faults within the reservoir. Other approaches include the capacitance-resistance model, described for example 

by Yousef et al. (2006). The model was based on governing material-balance equations at reservoir conditions and used to estimate two 

coefficients, one for the degree of connectivity and one for the amount of fluid stored between the wells. Recently, due to their nonlinear 

capabilities, attention has been given to Artificial Neural Networks (ANN). Demiryurek et al. (2008) generated an ANN with injection 

rates and production data and applied sensitivity analysis to quantify interwell connectivity. Sarkheil et al. (2009) presented a method of 

predicting natural fracture distribution between two wells using ANN, based on image logs and core measurements. Furthermore, Alizadeh 

et al. (2015) used ANNs to predict the fractures dip inclination degree of a well based on image log and other geological log data from 

two other wells nearby.  

Traditionally, the geothermal industry has sought inspiration to applications used within the oil and gas industry due to their similar nature 

as well as longer and more extensive history of research. Sullera (1998) isolated short-term variations in produced chloride concentration 

and injection rate using Wavelet transformations. These short-term variations were then used in multiple regressions to quantify 

connections between injectors and producers. Horne and Szucs (2007) further developed this idea by using nonparametric regression on 

the same data set without making assumptions about the underlying form of the relationships. Juliusson (2012) developed a novel method 

for characterizing fractured reservoirs using flow rate and tracer data. The flow rate data were used to calculate an interwell connectivity 

matrix, describing how injected fluid is divided between producers. A method referred to as M-ARX was used to compute the interwell 

connectivity, but the main advantage of the method was that producer-producer interactions could be estimated as well as injector-producer 

interactions. 

In reservoir engineering, statistical methods for directly predicting the reservoir response without inferring about its character are gaining 

popularity. Liu and Horne (2013) proposed to use a convolutional kernel based algorithm to forecast pressure response in oil wells based 

on flow rate histories. They applied the method successfully on multiple synthetic and real field cases, recovering the underlying reservoir 
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models. Tian and Horne (2015) formulated this approach as a feature-based linear regression, leading to a closed solution and thus reducing 

the computational cost dramatically. Additionally, Tian and Horne (2017) applied a Recurrent Neural Network (RNN) on synthetic and 

real flow rate and pressure data sets, showing the RNN’s ability to forecast the reservoir performance without making assumptions about 

the physical model.  

In this work, several statistical methods for reservoir characterization and predictions were analyzed and applied on a synthetic dataset of 

two-dimensional fracture networks representing geothermal reservoirs. The alternate conditional expectation (ACE) algorithm was used 

to infer well-to-well connectivity with production data, namely flow rates, tracer returns and temperature. The possibility of using 

clustering for reservoir characterization was studied. Fracture networks of similar character were grouped together and from each group 

interwell connectivity and temperature response ranges estimated. Lastly, the concept of direct forecasting in geothermal settings was 

introduced and the benefits and limitations of statistical methods investigated. 

2. METHODOLOGY 

2.1 Library of Fracture Networks  

A library of two-dimensional fracture networks was used for this work. The library was generated by Magnusdottir (2013) and included 

different realizations of a geothermal reservoir. Of the 1200 networks available, 800 were used for this study. The discrete fracture 

networks were generated from a distribution of several parameters such as fractal dimension, orientation and maximum length. The initial 

temperature of the reservoir was defined at 200°C and injection temperature at 100°C. Fluid was injected at 10 kg/s over 1000 days or 

approximately 3 years. A detailed description of the design and generation of the fracture networks can be found in Magnusdottir (2013). 

A summary of main reservoir parameters and an example a fracture network from the library are shown in Table 1.  

Table 1: Main reservoir parameters and an example of a fracture network. The red lines indicate fractures, blue triangle 

simulation mesh and colored circles wells (blue: Injector, red: Producer 1, green: Producer 2 and pink: Producer 3) 

 SI-Units 

 

Dimension (𝑥𝑦𝑧) 1000x1000x1 m3 

Spatial fractal dimension (𝐷) 1.0-1.6 

Fracture orientation (𝜃𝑓) 45°-135° 

Maximum fracture length (𝐿) 600 m 

Fracture aperture (𝑤) 0.002xL0.4 m 

Fracture porosity (𝜑𝑓) 0.9 

Fracture permeability (𝑘𝑓) w2/12 m2 

Matrix porosity (𝜑𝑚) 0.1 

Matrix permeability (𝑘𝑚) 10-10 m2 

2.2 The ACE Algorithm 

Regression analysis is a statistical process for estimating the relationship between variables. More specifically, its objective is to explain 

or reveal the effect of one or more independent variables (predictors) on a dependent variable (response). Traditionally, multiple regression 

techniques require making assumptions about the functional form of the relationship between response and predictor variables. In practice, 

this relationship is commonly unknown, which can lead to inaccurate assumptions causing erroneous and misleading results. The 

Alternating Conditional Expectations (ACE) algorithm is a nonparametric regression method that seeks to build a model, fitting the data 

without assuming an underlying form of the relationship between variables. 

The ACE algorithm was developed by Breiman and Friedman (1985) and its objective is to find transformations 𝜑1, … , 𝜑𝑝 of the predictor 

variables 𝑋1, … , 𝑋𝑝 and a transformation 𝜃 of the response variable 𝑌 that maximizes the correlation between 𝜃(𝑌) and  

𝜑1, … , ∑ 𝜑𝑖(𝑋𝑖)𝑝
𝑖=1 . The general form of the ACE regression model is written as: 

𝜃(𝑌) = ∑ 𝜑𝑖(𝑋𝑖)

𝑝

𝑖=1

+ 𝜖 

(1) 

 

where 𝜖 is the error that is not explained by the regression. The error is related to the maximum correlation coefficient by 𝜖2 = 1 − 𝜌2. 

Therefore, maximizing the correlation is equivalent to minimizing the error variance (under the constraint that 𝐸[𝜃2(𝑌)] = 1): 

𝜖2(𝜃, 𝜑1, … , 𝜑𝑝) = 𝐸[(𝜃(𝑌) − ∑ 𝜑𝑖(𝑋𝑖)

𝑝

𝑖=1

)2] 
(2) 

 

In order to minimize the error, optimal transformations 𝜃∗ and 𝜑∗ are defined. The ACE algorithm gives estimates of these transformations 

by the following iterative process.  
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1. Set 𝜃(𝑌) = 𝑌/‖𝑌‖ 

2. Compute new 𝜑 with 𝜑(𝑋) = 𝐸[𝜃(𝑌)|𝑋]. By defining 𝜑(𝑋) as the conditional expectation of 𝜃(𝑌) given 𝑋, 𝜑(𝑋) becomes 

the function of 𝑋 most correlated with 𝜃(𝑌). 

3. Compute new 𝜃 with 𝜃(𝑌) = 𝐸[𝜑(𝑋)|𝑌]/‖𝐸[𝜑(𝑋)|𝑦]‖. To fulfill the constraint of 𝐸[𝜃(𝑌)] = 1, the new 𝜃(𝑌) needs to be 

divided with the standard deviation. 

4. Repeat Step 2 and 3 until 𝜖2 fails to decrease. 

5. Now, 𝜃 and 𝜑 are the solutions to 𝜃∗ and 𝜑∗. 

As can be seen, the procedure involves alternating conditional expectations, hence the name of the algorithm (ACE). For the multiple 

predictor case in Eq. (2), the transformations of  𝜑(𝑋) and 𝜃(𝑌) can be expressed as: 

𝜑𝑖(𝑋𝑖) = 𝐸[𝜃(𝑌) − ∑ 𝜑𝑗(𝑋𝑗)|𝑋𝑖

𝑝

𝑗≠𝑖

] (3) 

𝜃(𝑌) = 𝐸[∑ 𝜑𝑖(𝑋𝑖)|𝑌

𝑝

𝑖=1

]/||𝐸[∑ 𝜑𝑖(𝑋𝑖)|𝑌

𝑝

𝑖=1

]|| (4) 

After the iterations, the final transformation functions 𝜑1(𝑋1), … , 𝜑𝑝(𝑋𝑝) and 𝜃(𝑌) are assumed to be the optimal transformations 

𝜑1
∗(𝑋1), … , 𝜑𝑝

∗(𝑋𝑝) and 𝜃∗(𝑌). Finally, the predictor and response variables are related in the transformation space through: 

𝜃∗(𝑌) = ∑ 𝜑𝑖
∗(𝑋𝑖)

𝑝

𝑖=1

+ 𝜖∗ (5) 

where 𝜖∗ is the minimization error not captured by the ACE transformations and is assumed to have a normal distribution with zero mean 

(Nguyen-Cong and Rode, 1995; Wang and Murphy, 2004). 

2.3 K-means Clustering 

Clustering involves finding subgroups in a dataset where observations within a subgroup are quite similar to each other, while observations 

in different groups are quite dissimilar from each other. Numerous clustering methods exist but one of the most popular is k-means 

clustering, which is a simple algorithm where observations are partitioned into prespecified number of clusters. Let 𝐶1, … , 𝐶𝐾 denote sets 

containing the indices of the observations in each cluster. These sets must fulfill: 

𝐶1 ∪ 𝐶2 ∪ … ∪ 𝐶𝑘 = {1, … , 𝑛}     and      𝐶𝑘 ∩ 𝐶𝑘′ = ∅ for all 𝑘 ≠ 𝑘′ (6) 

or in other words, each observation belongs to one and only one cluster. The goal of clustering is to minimize variation within a cluster 

as much as possible. That can be done by solving the following optimization problem: 

maximize
𝐶1,...,𝐶𝐾

{∑ 𝑊(𝐶𝑘)

𝐾

𝑘=1

} (7) 

where 𝑊(𝐶𝑘) is a measure of distance between observations. There are many ways to define a distance measure but the most commonly 

used is the Euclidian distance, expressed as: 

𝑊(𝐶𝑘) =
1

|𝐶𝑘|
∑ ∑(𝑥𝑖𝑗 − 𝑥𝑖′𝑗)2

𝑝

𝑗=1𝑖,𝑖′∈𝐶𝑘

 (8) 

An approximation to the optimization problem in Eq. (7) is found with the k-means algorithm by an iterative process. First each 

observation is assigned an initial cluster number from 1, . . . , 𝐾. For each cluster 𝐾, the cluster centroid is computed. Now each observation 

is assigned to a new cluster, whose centroid is closest, in terms of the Euclidian distance, to the observation. This procedure is repeated 

until cluster centroids stop shifting and cluster assignments stop changing. Because the k-means algorithm finds a local minimum it is 

important to run the algorithm multiple times with different initial conditions (James et al., 2013). 

2.4 Canonical Functional Component Analysis (CFCA) 

Canonical Functional Component Analysis (CFCA) involves building a statistical relationship between historical and forecasting data 

which can then be used along with observed data to make predictions. Here, a brief overview is given but a more detailed description of 

the procedure can be found in Satija et al. (2015, 2017) and Li (2017). Let 𝑑 represent data variables, sometimes referred to as the historical 

data, and 𝑚 the model parameters, such as porosity or permeability, of the subsurface model 𝑔. Similarly, let ℎ represent prediction 

variables, or the forecasting data, and 𝑟 another unknown forward operator of the subsurface model. Data variables, in the form of 

temperature and tracer concentration, at three different production well locations, illustrated in Table 1, are calculated after 𝑥 days of 

injection as: 
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𝑑𝑖(𝑡) = [𝑑𝑃1,𝑖(𝑡); 𝑑𝑃2,𝑖(𝑡); 𝑑𝑃3,𝑖(𝑡)] = 𝑔(𝑚𝑖) (9) 

where i = 1, . . . ,800 represents the number of models, or more specifically fracture networks in the library. In similar fashion, prediction 

variables are calculated after 𝑦 days of injection, where y > x, at the same locations as: 

ℎ𝑖(𝑡) = [ℎ𝑃1,𝑖(𝑡); ℎ𝑃2,𝑖(𝑡); ℎ𝑃3,𝑖(𝑡)] = 𝑟(𝑚𝑖) (10) 

Applying Functional Component Analysis (FCA), which presents time-series as linear combinations of basis functions, on the data and 

prediction variables results in: 

𝑑(𝑡) ≅ ∑ 𝑑𝑖
𝑓

𝜗𝑑,𝑖(𝑡)

𝐾

𝑖=1

          ℎ(𝑡) ≅ ∑ ℎ𝑖
𝑓

𝜗ℎ,𝑖(𝑡)

𝐾

𝑖=1

 (11) 

where 𝑑𝑓 and ℎ𝑓 are the functional components, representing the time series in a K-dimensional functional space. Significant reduction 

in dimensions can be obtained with FCA but the relationship between data and prediction variables may still be complex and nonlinear. 

Therefore, Canonical Component Analysis (CCA) is used to maximize the correlation between the nonlinearly related variables by 

applying the following transforms: 

𝑑𝑐 = 𝐴𝑇𝑑𝑓           ℎ𝑐 = 𝐵𝑇ℎ𝑓 (12) 

where 𝐴 and 𝐵 are the canonical variates of 𝑑𝑓 and ℎ𝑓. As well as maximizing the correlation, CCA constrains all intercomponent 

correlations to be zero. To apply CFCA on the library of fracture networks, networks are chosen from the library to serve as observed data 

sets 𝑑𝑜𝑏𝑠 = [𝑑𝑜𝑏𝑠,𝑃1;  𝑑𝑜𝑏𝑠,𝑃2;  𝑑𝑜𝑏𝑠,𝑃3] and predictions made on those. If CCA results in a linear relationship, linear Gaussian regression 

can be used to forecast ℎ directly from 𝑑. First, to make sure ℎ𝑓 follows a Gaussian distribution, simple normal score transformation is 

applied. Then the posterior distribution is formed, which is constrained to the canonical form of the observations 𝑓(ℎ𝑐|𝑑𝑜𝑏𝑠
𝑐 ). This 

distribution is sampled and the samples are then back transformed into time-series.  

3. RESULTS AND ANALYSIS 

3.1 Inferring Well Connectivity Using ACE 

Geothermal reservoirs are normally highly fractured with short circuit paths controlling the fluid flow, potentially leading reinjected fluid 

to producers without optimal thermal sweep of the reservoir. Using chloride concentration of produced fluid as a response variable and 

injection histories as predictor variables has proven successful in estimating well-to-well connectivity in actual fields as shown by Horne 

and Szucs (2007). In this study, other types of response data were investigated and their ability, in conjunction with nonparametric 

regression, to estimate meaningful well connectivity indices. These responses are namely tracer and temperature histories in producers 

due to injection. 

Water at 100°C with NaCl concentration equal to 22 wt% was injected into the reservoir which was at 200°C and production wells 

modeled to deliver against fixed bottom hole pressure. Due to the injection, the temperature at the production wells decreased over time 

with a slope depending on the connection between the injector and producers. In this case, the subject of investigation was the effect of a 

constant injection at one location on three production wells located within the reservoir boundaries. Therefore, for the ACE regression 

technique, the constant injection rate is defined as the response variable 𝑌 and the resulting signals at the three producers as predictor 

variables. The ACE algorithm is applied on the library, one fracture network a time, and the results then normalized where values close 

to 1 are believed to exemplify strong connections and values close to 0 weaker ones. 

First, the temperature response at the three producers due to injection over 1000 days was analyzed. The well-to-well connectivity indices 

obtained with the ACE algorithm for all fracture networks can be seen in Figure 1. Three temperature curves are presented for each 

fracture network, Producer 1, Producer 2 and Producer 3, which are colored according to the strength of the connection. A trend can be 

seen for Producer 1 and Producer 2, temperature curves with high connectivity (in red) drop faster than temperature curves with low 

connectivity (in blue). This is consistent with the physical processes taking place because for highly connected paths, injected fluid travels 

faster towards producers resulting in more rapid cooling. For Producer 3, a pattern is present in the data, but the situation is reversed, slow 

cooling curves are characterized with high connectivity. Furthermore, for all producers there is some overlap in the data which could 

indicate that there is not a clear correlation between temperature and connectivity. 

Investigating tracer concentration at the three producers due to injection over 1000 days yields different results. The well-to-well 

connectivity indices from the nonparametric regression, using the tracer data, can be seen in the left column of Figure 2. These connectivity 

indices are also used to label corresponding temperature curves of each producer, illustrated in the right column of Figure 2. Note that for 

clearer presentation, tracer curves are only plotted up to 200 days even though data up to 1000 days is used for the regression. In this case, 

a clear trend in tracer curves is present. Rapid decrease in tracer concentrations correspond to high connectivity flow paths. Furthermore, 

little to no overlap of colored curves can be seen, indicating that using tracer data could potentially yield meaningful well connectivity 

indices. The corresponding temperature curves, labeled with connectivity indices obtained using tracer data, are also in good accordance 

with physical processes. 
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Figure 1: Temperature response curves at each producer for the library of fracture networks. Each curve is colored according 

the well-to-well connectivity indices calculated with ACE and temperature data. 

 

Figure 2: Tracer curves, colored with connectivity indices obtained using tracer data (left column). Corresponding temperature 

curves, colored with the same connectivity indices (right column). Note that tracer data is only plotted up to 200 days.  
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Figure 3: Examples of fracture networks (Network 1, 2 and 3) with grey arrows indicated direction of flow from the injector to 

the producers (top row). Corresponding temperature response curves for Network 1, 2 and 3 colored with well type along 

with well-to-well connectivity value between injector and each producer (bottom row). 

To quantify if the interwell connectivity calculated with ACE can be related to the physical fluid motions in the subsurface, a comparison 

to tracer tests was made. For the library of fracture networks, both the thermal behavior as well as the chemical front due to injection were 

simulated, and the first arrival or transit time of the injected fluid noted. Quick arrival represents strong connectivity and thus the inverse 

of the transit time is used as an indicator of the connectivity. To compare the ACE connectivity indices to the ones obtained from tracer 

transit times, the indices were normalized so that they sum to one for each individual fracture network. For 80.5% of the networks in the 

library, the ACE connectivity was within ±0.05 of the tracer connectivity when the nonparametric regression was performed with tracer 

data. Furthermore, for 54.5% of the networks the strength of connection was correctly ordered (e.g. P2: highest, P1: lower, P3: lowest). 

Using temperature data instead of tracer data, these ratios were reduced to 58.3% and 18.8%, demonstrating the greater predictive abilities 

of tracers.  

3.2 Reservoir Characterization Using Clustering 

Many types of fracture networks are found in geothermal reservoirs. With exploration methods, geophysicists are able to map major faults 

and fractures, but the detailed character of the networks is not easily interpreted. With the true nature of reservoirs usually unknown, the 

exploratory capabilities of unsupervised learning could potentially be helpful in reservoir characterization. Here we discuss the possibility 

of using clustering to group fracture networks and thus infer about the character of geothermal reservoirs as well as their thermal behavior. 

To simplify the examples, only response values from Producer 1 (P1) and Producer 2 (P2) were used and values from Producer 3 (P3) 

excluded. This is equal to dividing the fracture networks shown in Table 1 horizontally in half, considering exclusively the upper half. 

The response of the producers due to injection are in the form of time series. This can add complexity because typical machine learning 

methods assume that the data are independent and identically distributed, which is not the case for time series data. Therefore, Principal 

Component Analysis (PCA) was performed on the time series to produce independent principal components and reduce the dimensionality 

of the problem. For this library of fracture networks, the first two principal components were found to explain 85% of the total variance 

in the data. 

The tracer return curves from P1 and P2 were used as inputs to the k-means clustering algorithm and for robustness, ten-fold cross 

validation was performed. This procedure involves dividing the data set randomly into ten groups of roughly equal size. The first group 

is treated as a validation set, while the clustering algorithm is used on the other nine parts. Then this is repeated for all groups. Robustness 

comes from the fact that slightly different datasets are being used for the clustering and therefore in the end ten slightly different clustering 

schemes will be obtained. For the final product, the average is taken to represent the P10-P50-P90 quantiles of the temperature curves for 

each producer. 

Results from k-means clustering on tracer data from P1 and P2 using three clusters are shown in Figure 4. In Figure 4(a), the two principal 

components of the data are plotted along with a cluster label where each point represents a fracture network. Figure 4(b) has the same 

configuration as Figure 4(a) but with each cluster having a different marker: Cluster 1 is a circle, Cluster 2 a square and Cluster 3 a 

diamond. The markers are further colored according to the well connectivity indices of P1 and P2, obtained with the ACE algorithm in 
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the previous section. Lastly, in Figure 4(c), the temperature curves for each producer are plotted and curves colored to identify to which 

cluster they belong. Taking a closer look at Figure 4(b), for networks within Cluster 1, P1 has rather low well connectivity while P2 is 

highly connected to the producer. For Cluster 2, this is reversed, P1 has high connectivity and P2 low connectivity, and for Cluster 3 both 

producers have intermediate connectivity. This is further shown in Figure 4(c), where for Cluster 1 temperature drops slowly in P1 but 

rapidly in P2, for Cluster 2 this is reversed and for Cluster 3 the decrease in temperature is similar for both producers. 

 

(a) Cluster 1 (blue), Cluster 2 (red) and Cluster 3 (yellow). 

 

(b) Cluster 1 (circle), Cluster 2 (square) and Cluster 3 (diamond), colored with well connectivity indices. 

 

(c) Temperature curves for Producer 1 and 2; Cluster 1 (blue), Cluster 2 (red) and Cluster 3 (yellow). 

Figure 4: Results from k-means clustering with k = 3, using tracer data from P1 and P2. 

For comparison, analyses of Networks 1, 2 and 3 from the previous section are shown. The networks were assigned to a cluster according 

to the smallest distance between the networks and the cluster centroids. The results are illustrated in Figure 5: Cluster 1 (blue), Cluster 2 
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(red) and Cluster 3 (yellow) using tracer data along with temperature curves from Network 1, 2, and 3 (in pink)., Network 1 falls within 

Cluster 3, Network 2 within Cluster 2 and Network 3 within Cluster 1. Table 2 lists the actual temperature of each network after 1000 

days of simulation, along with temperature boundaries found by clustering. Now, instead of having only one best fit to the 'true' reservoir, 

a range of networks has been found. The widths of these temperature boundaries range from 10°C to 25°C. Temperature curves of Network 

2 and 3 fall within the boundaries of their clusters, while Network 1 is harder to match. The poor match to Network 1 can be explained 

partly by the limited number of fracture networks in the library, as there are not enough networks with similar behavior. Adding more 

producers increases the complexity and more clusters are needed to describe the data. Another example is considered where curves from 

all producers, P1, P2 and P3, are clustered into five groups. Results are reported in Table 3.  

 

 

 

Figure 5: Cluster 1 (blue), Cluster 2 (red) and Cluster 3 (yellow) using tracer data along with temperature curves from Network 

1, 2, and 3 (in pink). 
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Table 2: The actual temperature of Network 1, 2 and 3 after 1000 days of injection along with temperature ranges found with k-

means clustering (using P1 and P2). 

Actual temperature Network 1 Network 2 Network 3 

Producer 1 123°C 104°C 118°C 

Producer 2 126°C 125°C 106°C 

k-means temperature, k = 3 Network 1 Network 2 Network 3 

Producer 1 105-118°C 102-112°C 107-131°C 

Producer 2 104-116°C 108-128°C 102-112°C 

Table 3: The actual temperature of Network 1, 2 and 3 after 1000 days of injection along with temperature ranges found with k-

means clustering (using P1, P2 and P3). 

Actual temperature Network 1 Network 2 Network 3 

Producer 1 123°C 104°C 118°C 

Producer 2 126°C 125°C 106°C 

Producer 3 108°C 139°C 151°C 

k-means temperature, k = 5 Network 1 Network 2 Network 3 

Producer 1 107-124°C 102-111°C 109-132°C 

Producer 2 106-123°C 109-129°C 102-111°C 

Producer 3 106-121°C 118-144°C 118-144°C 

 

The greatest challenge in cluster analysis is to determine the optimal number of clusters. The choice of 𝑘 often seems highly subjective to 

the desired clustering resolution of the user. Increasing 𝑘 will always reduce the error in the resulting clustering to the point that each data 

point becomes its own cluster. However, increasing 𝑘 without thought, can cause overfitting problems where the generalization of the 

clustering model reduces. One way to validate the number of clusters is the elbow method. In short, the method involves applying k-

means clustering on a wide range of values of 𝑘, and for each 𝑘 calculate the sum of squared errors. Plotting the sum of squared error as 

a function of 𝑘, the curve should look like an arm, where the "best" value of 𝑘 is the elbow. This method does not always work well, 

especially if the data are not particularly clustered. Another method is the so-called gap statistics, where the user finds a standardized 

comparison of log 𝑊𝑘 with a null reference distribution of the data, that is a distribution with no obvious clustering. The elbow method 

and the gap statistics were applied on the dataset. When using only P1 and P2 the methods gave an optimum around 3-4 clusters but for 

the extended case, P1, P2 and P3, no distinct optimum was found. This can be due to several reasons. First, the data curves are of similar 

shapes, resulting in unclear clustering structure where clusters are very close to each other. Second, the limited number of fracture networks 

used can be problematic. 

3.3 Direct forecasting using CFCA 

The goal of developing a model of a geothermal field is not necessarily to obtain the model parameters themselves but to attain forecasts 

made by the model along with uncertainty quantification. A Prediction Focused Approach (PFA) has been suggested by Scheidt et al. 

(2014) and Satija et al. (2015) that builds a statistical relationship between historical and forecasting data that could help avoid full model 

inversion. Satija et al. (2015) proposed a Canonical Functional Component Analysis (CFCA) that in short consists of: (1) reducing the 

dimension of time-series data; (2) building a linear relationship between historical and forecasting data; and (3) using regression to quantify 

forecast uncertainty. 

Here, the possibility to make predictions about thermal behavior of three production wells due to cold fluid injection was investigated. 

These predictions were based on historical data either in the form of tracer concentration or temperature at the producers. To make reliable 

predictions, good correlation needs to be established between data variables (historical data) and prediction variables (forecasting data). 

If poor correlation exists between the data, predictions often have no physical meaning and turn out to be wrong. For this study, tracer 

return curves up to 500 days at the three producers were used as historical data and temperature curves from 500 to 1000 days as forecasting 

data. Firstly, tracer concentration at P1 was used to predict the producer's temperature at later time. The data used for the CFCA and 

corresponding results are illustrated in Figure 6. The data-prediction relationship is highly linear which allows for the linear Gaussian 

regression to be used to sample prediction curves (posterior) from a Gaussian distribution. Comparing P10-P90 quantiles of the forecasting 

data to the P10-P90 quantiles of the predictions, a great uncertainty reduction may be obtained. Similar prediction results were obtained 

for P2 and P3, shown in Figure 7.  

Additionally, an exploration whether correlation exists between data of different wells was undertaken, for example to understand if data 

from P1 can be used to predict the response of P2 and so on. Figure 8 shows one these scenarios, where data from P1 and P3 is used to 

predict the response of P2. The data-prediction relationship becomes less linear but is still high enough for the prediction to be meaningful. 

Furthermore, the P10-P90 quantiles of the forecasting data increased compared to using data from P2 to predict on itself. The same analysis 

was performed using temperature data as both data and prediction variables which resulted in a lower data-prediction correlation in all 
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cases.  The result is not surprising since the chemical front travels orders of magnitude faster than the thermal front, granting tracers their 

predictive capabilities. 

 

 

Figure 6: Data (tracer return curves) and prediction (temperature curves) variables (top). Data-prediction correlation coefficient 

(bottom left) and forecast quantiles for Producer 1 (bottom right). 

 

 

Figure 7: Forecast quantiles for Producer 2 (left) and Producer 3 (right). 
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Figure 8: Correlation coefficient (left) and forecast quantiles (right) for Producer 2 when using data from Producer 1 and 3 for 

the analysis. 

4. CONCLUSIONS 

The cornerstone of a successful geothermal power generation is to sustain fluid or steam flow with high energy content. The supply is 

maintained by reinjecting waste water into the reservoir, which in turn brings the possibility of a thermal breakthrough in producers. The 

disadvantages of conventional methods for predictions, which involve building reservoir simulation models based on exploration data, 

inversions and iterations, are the computational efforts needed and the prior knowledge of the underlying physical models required. The 

field of data science is steadily growing, and many data-driven models and machine learning techniques have shown potential in analyzing 

large volumes of data from multiple wells, overcoming some of the limitations of preceding methods.  

In this study, three statistical methods for reservoir characterization and prediction modeling were introduced. A nonparametric regression 

with the ACE algorithm was applied on a library of fracture networks and the well-to-well connectivity between injector and producers 

estimated. Results obtained using tracer data for the regression were in good agreement with tracer transit times whereas temperature data 

displayed much less correlation to connectivity. K-means clustering showed promise in being able to group fracture networks in agreement 

with connectivity between wells and CFCA was able to make direct forecasts for the producers based on tracer or temperature data. 

However, some complications were encountered. For the clustering technique the complexity grows with added producers, and therefore 

the number of groups increases in order to adequately describe the character of the fracture networks. Furthermore, the challenge of 

deciding how many clusters should be used is often difficult to solve. The CFCA method assumes data is smooth and its success depends 

on finding a linear relationship between data and prediction variables in the canonical space. Introducing real data, this relationship will 

most likely become less linear due to added noise. Moreover, the time-series data will not be smooth and perhaps even discontinuous. 

To further support the use of these methods in geothermal settings, a broader analysis needs to be conducted. More realistic realizations 

of geothermal reservoirs will be generated, and the complexity of injection schedules increased. Furthermore, field scale data are 

considered and other statistical learning methods that can overcome the aforementioned shortcomings investigated.  
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